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1 THE ELECTRICAL/ELECTRONICS INDUSTRY

Over the past few decades, technology has been changing at an ever-increasing rate. The pres-
sure to develop new products, improve the performance of existing systems, and create new
markets will only accelerate that rate. This pressure, however, is also what makes the field so
exciting. New ways of storing information, constructing integrated circuits, and developing
hardware that contains software components that can “think” on their own based on data input
are only a few possibilities.

Change has always been part of the human experience, but it used to be gradual. This is no
longer true. Just think, for example, that it was only a few years ago that TVs with wide, flat
screens were introduced. Already, these have been eclipsed by high-definition TVs with im-
ages so crystal clear that they seem almost three-dimensional.

Miniaturization has also made possible huge advances in electronic systems. Cell phones
that originally were the size of notebooks are now smaller than a deck of playing cards. In
addition, these new versions record videos, transmit photos, send text messages, and have
calendars, reminders, calculators, games, and lists of frequently called numbers. Boom boxes
playing audio cassettes have been replaced by pocket-sized iPods® that can store 30,000
songs or 25,000 photos. Hearing aids with higher power levels that are almost invisible in
the ear, TVs with 1-inch screens—the list of new or improved products continues to expand
because significantly smaller electronic systems have been developed.

This reduction in size of electronic systems is due primarily to an important innovation
introduced in 1958—the integrated circuit (IC). An integrated circuit can now contain features
less than 50 nanometers across. The fact that measurements are now being made in nanome-
ters has resulted in the terminology nanotechnology to refer to the production of integrated
circuits called nanochips. To understand nanometers, consider drawing 100 lines within 
the boundaries of 1 inch. Then attempt drawing 1000 lines within the same length. Cutting 
50-nanometer features would require drawing over 500,000 lines in 1 inch. The integrated
circuit shown in Fig. 1 is an Intel® Core 2 Extreme quad-core processor that has 291 million
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INTRODUCTION

transistors in each dual-core chip. The result is that the entire package,
which is about the size of three postage stamps, has almost 600 million
transistors—a number hard to comprehend.

However, before a decision is made on such dramatic reductions in
size, the system must be designed and tested to determine if it is worth
constructing as an integrated circuit. That design process requires engi-
neers who know the characteristics of each device used in the system,
including undesirable characteristics that are part of any electronic
element. In other words, there are no ideal (perfect) elements in an elec-
tronic design. Considering the limitations of each component is neces-
sary to ensure a reliable response under all conditions of temperature,
vibration, and effects of the surrounding environment. To develop this
awareness requires time and must begin with understanding the basic
characteristics of the device, as covered in this text. One of the objec-
tives of this text is to explain how ideal components work and their func-
tion in a network. Another is to explain conditions in which components
may not be ideal.

One of the very positive aspects of the learning process associated
with electric and electronic circuits is that once a concept or procedure is
clearly and correctly understood, it will be useful throughout the career
of the individual at any level in the industry. Once a law or equation is
understood, it will not be replaced by another equation as the material
becomes more advanced and complicated. For instance, one of the first
laws to be introduced is Ohm’s law. This law provides a relationship be-
tween forces and components that will always be true, no matter how
complicated the system becomes. In fact, it is an equation that will be
applied in various forms throughout the design of the entire system. The
use of the basic laws may change, but the laws will not change and will
always be applicable.

It is vitally important to understand that the learning process for cir-
cuit analysis is sequential. Your beginning studies will establish the
foundation for the material that follows. Failure to properly understand
the early material will only lead to difficulties understanding the mate-
rial later in this course. This chapter provides a brief history of the field
followed by a review of mathematical concepts necessary to understand
the rest of the material.

USA

(a)

FIG. 1

Intel® Core™ 2 Extreme quad-core processer: (a) surface appearance, (b) internal chips.
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(b)

Integrated Heat Spreader (IHS):
The integrated metal heat spreader
spreads heat from the silicon chips
and protects them.

Silicon chips (dies): The two dies 
inside the Intel® Core™ 2 Extreme
quad-core processor are 143 mm2 in 
size and utilize 291 million transistors
each.

Substrate: The dies are mounted 
directly to the substrate which 
facilitates the contact to the
motherboard and chipset of the
PC via 775 contacts and electrical
connections.
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INTRODUCTION

2 A BRIEF HISTORY

In the sciences, once a hypothesis is proven and accepted, it becomes
one of the building blocks of that area of study, permitting additional in-
vestigation and development. Naturally, the more pieces of a puzzle
available, the more obvious is the avenue toward a possible solution. In
fact, history demonstrates that a single development may provide the key
that will result in a mushrooming effect that brings the science to a new
plateau of understanding and impact.

If the opportunity presents itself, read one of the many publications
reviewing the history of this field. Space requirements are such that only
a brief review can be provided here. There are many more contributors
than could be listed, and their efforts have often provided important keys
to the solution of some very important concepts.

Throughout history, some periods were characterized by what ap-
peared to be an explosion of interest and development in particular areas.
As you will see from the discussion of the late 1700s and the early
1800s, inventions, discoveries, and theories came fast and furiously.
Each new concept broadens the possible areas of application until it be-
comes almost impossible to trace developments without picking a par-
ticular area of interest and following it through. In the review, as you
read about the development of radio, television, and computers, keep in
mind that similar progressive steps were occurring in the areas of the
telegraph, the telephone, power generation, the phonograph, appliances,
and so on.

There is a tendency when reading about the great scientists, inventors,
and innovators to believe that their contribution was a totally individual
effort. In many instances, this was not the case. In fact, many of the great
contributors had friends or associates who provided support and encour-
agement in their efforts to investigate various theories. At the very least,
they were aware of one another’s efforts to the degree possible in the
days when a letter was often the best form of communication. In partic-
ular, note the closeness of the dates during periods of rapid development.
One contributor seemed to spur on the efforts of the others or possibly
provided the key needed to continue with the area of interest.

In the early stages, the contributors were not electrical, electronic, or
computer engineers as we know them today. In most cases, they were
physicists, chemists, mathematicians, or even philosophers. In addition,
they were not from one or two communities of the Old World. The home
country of many of the major contributors introduced in the paragraphs
to follow is provided to show that almost every established community
had some impact on the development of the fundamental laws of electri-
cal circuits.

As you proceed through your studies, you will find that a number of
the units of measurement bear the name of major contributors in those
areas—volt after Count Alessandro Volta, ampere after André Ampère,
ohm after Georg Ohm, and so forth—fitting recognition for their impor-
tant contributions to the birth of a major field of study.

Time charts indicating a limited number of major developments are
provided in Fig. 2, primarily to identify specific periods of rapid devel-
opment and to reveal how far we have come in the last few decades. In
essence, the current state of the art is a result of efforts that began in
earnest some 250 years ago, with progress in the last 100 years being al-
most exponential.

3



As you read through the following brief review, try to sense the grow-
ing interest in the field and the enthusiasm and excitement that must
have accompanied each new revelation. Although you may find some of
the terms used in the review new and essentially meaningless, the re-
maining chapters will explain them thoroughly.

The Beginning

The phenomenon of static electricity has intrigued scholars throughout
history. The Greeks called the fossil resin substance so often used to
demonstrate the effects of static electricity elektron, but no extensive
study was made of the subject until William Gilbert researched the phe-
nomenon in 1600. In the years to follow, there was a continuing investi-
gation of electrostatic charge by many individuals, such as Otto von
Guericke, who developed the first machine to generate large amounts of
charge, and Stephen Gray, who was able to transmit electrical charge
over long distances on silk threads. Charles DuFay demonstrated that
charges either attract or repel each other, leading him to believe that
there were two types of charge—a theory we subscribe to today with our
defined positive and negative charges.

There are many who believe that the true beginnings of the electrical
era lie with the efforts of Pieter van Musschenbroek and Benjamin
Franklin. In 1745, van Musschenbroek introduced the Leyden jar for
the storage of electrical charge (the first capacitor) and demonstrated
electrical shock (and therefore the power of this new form of energy).
Franklin used the Leyden jar some 7 years later to establish that light-
ning is simply an electrical discharge, and he expanded on a number of
other important theories, including the definition of the two types of
charge as positive and negative. From this point on, new discoveries and
theories seemed to occur at an increasing rate as the number of individu-
als performing research in the area grew.

INTRODUCTION
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In 1784, Charles Coulomb demonstrated in Paris that the force be-
tween charges is inversely related to the square of the distance between
the charges. In 1791, Luigi Galvani, professor of anatomy at the Univer-
sity of Bologna, Italy, performed experiments on the effects of electricity
on animal nerves and muscles. The first voltaic cell, with its ability to
produce electricity through the chemical action of a metal dissolving in
an acid, was developed by another Italian, Alessandro Volta, in 1799.

The fever pitch continued into the early 1800s, with Hans Christian
Oersted, a Danish professor of physics, announcing in 1820 a relation-
ship between magnetism and electricity that serves as the foundation 
for the theory of electromagnetism as we know it today. In the same
year, a French physicist, André Ampère, demonstrated that there are
magnetic effects around every current-carrying conductor and that
current-carrying conductors can attract and repel each other just like
magnets. In the period 1826 to 1827, a German physicist, Georg Ohm,
introduced an important relationship between potential, current, and re-
sistance that we now refer to as Ohm’s law. In 1831, an English physi-
cist, Michael Faraday, demonstrated his theory of electromagnetic
induction, whereby a changing current in one coil can induce a changing
current in another coil, even though the two coils are not directly con-
nected. Faraday also did extensive work on a storage device he called the
condenser, which we refer to today as a capacitor. He introduced the
idea of adding a dielectric between the plates of a capacitor to increase
the storage capacity. James Clerk Maxwell, a Scottish professor of natu-
ral philosophy, performed extensive mathematical analyses to develop
what are currently called Maxwell’s equations, which support the efforts
of Faraday linking electric and magnetic effects. Maxwell also devel-
oped the electromagnetic theory of light in 1862, which, among other
things, revealed that electromagnetic waves travel through air at the ve-
locity of light (186,000 miles per second or 3 × 108 meters per second).
In 1888, a German physicist, Heinrich Rudolph Hertz, through experi-
mentation with lower-frequency electromagnetic waves (microwaves),
substantiated Maxwell’s predictions and equations. In the mid-1800s,
Gustav Robert Kirchhoff introduced a series of laws of voltages and
currents that find application at every level and area of this field. In
1895, another German physicist, Wilhelm Röntgen, discovered electro-
magnetic waves of high frequency, commonly called X-rays today.

By the end of the 1800s, a significant number of the fundamental
equations, laws, and relationships had been established, and various
fields of study, including electricity, electronics, power generation and
distribution, and communication systems, started to develop in earnest.

The Age of Electronics

Radio The true beginning of the electronics era is open to debate and
is sometimes attributed to efforts by early scientists in applying potentials
across evacuated glass envelopes. However, many trace the beginning to
Thomas Edison, who added a metallic electrode to the vacuum of the
tube and discovered that a current was established between the metal
electrode and the filament when a positive voltage was applied to the
metal electrode. The phenomenon, demonstrated in 1883, was referred
to as the Edison effect. In the period to follow, the transmission of radio
waves and the development of the radio received widespread attention.
In 1887, Heinrich Hertz, in his efforts to verify Maxwell’s equations,
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transmitted radio waves for the first time in his laboratory. In 1896, an
Italian scientist, Guglielmo Marconi (often called the father of the
radio), demonstrated that telegraph signals could be sent through the air
over long distances (2.5 kilometers) using a grounded antenna. In the
same year, Aleksandr Popov sent what might have been the first radio
message some 300 yards. The message was the name “Heinrich Hertz”
in respect for Hertz’s earlier contributions. In 1901, Marconi established
radio communication across the Atlantic.

In 1904, John Ambrose Fleming expanded on the efforts of Edison to
develop the first diode, commonly called Fleming’s valve—actually
the first of the electronic devices. The device had a profound impact on
the design of detectors in the receiving section of radios. In 1906, Lee De
Forest added a third element to the vacuum structure and created the first
amplifier, the triode. Shortly thereafter, in 1912, Edwin Armstrong built
the first regenerative circuit to improve receiver capabilities and then
used the same contribution to develop the first nonmechanical oscillator.
By 1915, radio signals were being transmitted across the United States,
and in 1918 Armstrong applied for a patent for the superheterodyne cir-
cuit employed in virtually every television and radio to permit amplifica-
tion at one frequency rather than at the full range of incoming signals.
The major components of the modern-day radio were now in place, and
sales in radios grew from a few million dollars in the early 1920s to over
$1 billion by the 1930s. The 1930s were truly the golden years of radio,
with a wide range of productions for the listening audience.

Television The 1930s were also the true beginnings of the television
era, although development on the picture tube began in earlier years with
Paul Nipkow and his electrical telescope in 1884 and John Baird and his
long list of successes, including the transmission of television pictures
over telephone lines in 1927 and over radio waves in 1928, and simulta-
neous transmission of pictures and sound in 1930. In 1932, NBC in-
stalled the first commercial television antenna on top of the Empire State
Building in New York City, and RCA began regular broadcasting in
1939. World War 2 slowed development and sales, but in the mid-1940s
the number of sets grew from a few thousand to a few million. Color tel-
evision became popular in the early 1960s.

Computers The earliest computer system can be traced back to
Blaise Pascal in 1642 with his mechanical machine for adding and sub-
tracting numbers. In 1673, Gottfried Wilhelm von Leibniz used the
Leibniz wheel to add multiplication and division to the range of opera-
tions, and in 1823 Charles Babbage developed the difference engine to
add the mathematical operations of sine, cosine, logarithms, and several
others. In the years to follow, improvements were made, but the system
remained primarily mechanical until the 1930s when electromechanical
systems using components such as relays were introduced. It was not
until the 1940s that totally electronic systems became the new wave. It is
interesting to note that, even though IBM was formed in 1924, it did not
enter the computer industry until 1937. An entirely electronic system
known as ENIAC was dedicated at the University of Pennsylvania in
1946. It contained 18,000 tubes and weighed 30 tons but was several
times faster than most electromechanical systems. Although other vac-
uum tube systems were built, it was not until the birth of the solid-state
era that computer systems experienced a major change in size, speed,
and capability.
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The Solid-State Era

In 1947, physicists William Shockley, John Bardeen, and Walter H.
Brattain of Bell Telephone Laboratories demonstrated the point-contact
transistor (Fig. 3), an amplifier constructed entirely of solid-state ma-
terials with no requirement for a vacuum, glass envelope, or heater volt-
age for the filament. Although reluctant at first due to the vast amount
of material available on the design, analysis, and synthesis of tube net-
works, the industry eventually accepted this new technology as the
wave of the future. In 1958, the first integrated circuit (IC) was devel-
oped at Texas Instruments, and in 1961 the first commercial integrated
circuit was manufactured by the Fairchild Corporation.

It is impossible to review properly the entire history of the electrical/
electronics field in a few pages. The effort here, both through the dis-
cussion and the time graphs in Fig. 2, was to reveal the amazing
progress of this field in the last 50 years. The growth appears to be
truly exponential since the early 1900s, raising the interesting ques-
tion, Where do we go from here? The time chart suggests that the next
few decades will probably contain many important innovative contri-
butions that may cause an even faster growth curve than we are now
experiencing.

3 UNITS OF MEASUREMENT

One of the most important rules to remember and apply when working
in any field of technology is to use the correct units when substituting
numbers into an equation. Too often we are so intent on obtaining a nu-
merical solution that we overlook checking the units associated with the
numbers being substituted into an equation. Results obtained, therefore,
are often meaningless. Consider, for example, the following very funda-
mental physics equation:

y ϭ velocity
d ϭ distance (1)
t ϭ time

Assume, for the moment, that the following data are obtained for a mov-
ing object:

and y is desired in miles per hour. Often, without a second thought or
consideration, the numerical values are simply substituted into the equa-
tion, with the result here that

As indicated above, the solution is totally incorrect. If the result is de-
sired in miles per hour, the unit of measurement for distance must be
miles, and that for time, hours. In a moment, when the problem is ana-
lyzed properly, the extent of the error will demonstrate the importance of
ensuring that

the numerical value substituted into an equation must have the unit
of measurement specified by the equation.

y ϭ
d

t
ϭ

4000 ft

1 min
ϭ 4000 mph

 t ϭ 1 min

 d ϭ 4000 ft

y ϭ
d

t
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FIG. 3

The first transistor.
(Used with permission of Lucent Technologies Inc./

Bell Labs.)
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The next question is normally, How do I convert the distance and time
to the proper unit of measurement? A method is presented in Section 9
of this chapter, but for now it is given that

Substituting into Eq. (1), we have

which is significantly different from the result obtained before.
To complicate the matter further, suppose the distance is given in

kilometers, as is now the case on many road signs. First, we must re-
alize that the prefix kilo stands for a multiplier of 1000 (to be intro-
duced in Section 5), and then we must find the conversion factor
between kilometers and miles. If this conversion factor is not readily
available, we must be able to make the conversion between units
using the conversion factors between meters and feet or inches, as de-
scribed in Section 9.

Before substituting numerical values into an equation, try to mentally
establish a reasonable range of solutions for comparison purposes. For
instance, if a car travels 4000 ft in 1 min, does it seem reasonable that the
speed would be 4000 mph? Obviously not! This self-checking procedure
is particularly important in this day of the hand-held calculator, when
ridiculous results may be accepted simply because they appear on the
digital display of the instrument.

Finally,

if a unit of measurement is applicable to a result or piece of data,
then it must be applied to the numerical value.

To state that y ϭ 44.71 without including the unit of measurement mph
is meaningless.

Eq. (1) is not a difficult one. A simple algebraic manipulation will re-
sult in the solution for any one of the three variables. However, in light
of the number of questions arising from this equation, the reader may
wonder if the difficulty associated with an equation will increase at the
same rate as the number of terms in the equation. In the broad sense, this
will not be the case. There is, of course, more room for a mathematical
error with a more complex equation, but once the proper system of units
is chosen and each term properly found in that system, there should be
very little added difficulty associated with an equation requiring an in-
creased number of mathematical calculations.

In review, before substituting numerical values into an equation, be
absolutely sure of the following:

1. Each quantity has the proper unit of measurement as defined by
the equation.

2. The proper magnitude of each quantity as determined by the 
defining equation is substituted.

3. Each quantity is in the same system of units (or as defined by the
equation).

4. The magnitude of the result is of a reasonable nature when 
compared to the level of the substituted quantities.

5. The proper unit of measurement is applied to the result.

y ϭ
d

t
ϭ

0.76 mi

0.017 h
ϭ 44.71 mph

 1 min ϭ 1
60 h ϭ 0.017 h

 4000 ft ϭ 0.76 mi

 1 mi ϭ 5280 ft
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4 SYSTEMS OF UNITS

In the past, the systems of units most commonly used were the English
and metric, as outlined in Table 1. Note that while the English system is
based on a single standard, the metric is subdivided into two interrelated
standards: the MKS and the CGS. Fundamental quantities of these sys-
tems are compared in Table 1 along with their abbreviations. The MKS
and CGS systems draw their names from the units of measurement used
with each system; the MKS system uses Meters, Kilograms, and
Seconds, while the CGS system uses Centimeters, Grams, and Seconds.

INTRODUCTION

TABLE 1

Comparison of the English and metric systems of units.

ENGLISH METRIC SI

MKS CGS

Length:
Yard (yd)
(0.914 m)

Meter (m)
(39.37 in.)
(100 cm)

Centimeter (cm)
(2.54 cm ϭ 1 in.)

Meter (m)

Mass:
Slug
(14.6 kg)

Kilogram (kg)
(1000 g)

Gram (g) Kilogram (kg)

Force:
Pound (lb)
(4.45 N)

Newton (N)
(100,000 dynes)

Dyne
Newton (N)

Temperature:
Fahrenheit (°F)

aϭ 9

5
 °C ϩ 32 b

Celsius or
Centigrade (°C)

�ϭ (°F Ϫ 32)�5

9

Centigrade (°C) Kelvin (K)
K ϭ 273.15 ϩ °C

Energy:
Foot-pound (ft-lb)
(1.356 joules)

Newton-meter (N•m)
or joule (J) 
(0.7376 ft-lb)

Dyne-centimeter or erg
(1 joule ϭ 107 ergs)

Joule (J)

Time:
Second (s) Second (s) Second (s) Second (s)

Understandably, the use of more than one system of units in a world
that finds itself continually shrinking in size, due to advanced technical
developments in communications and transportation, would introduce
unnecessary complications to the basic understanding of any technical
data. The need for a standard set of units to be adopted by all nations has
become increasingly obvious. The International Bureau of Weights and
Measures located at Sèvres, France, has been the host for the General
Conference of Weights and Measures, attended by representatives from
all nations of the world. In 1960, the General Conference adopted a sys-
tem called Le Système International d’Unités (International System of
Units), which has the international abbreviation SI. It was adopted by
the Institute of Electrical and Electronic Engineers (IEEE) in 1965 and
by the United States of America Standards Institute (USASI) in 1967 as
a standard for all scientific and engineering literature.

For comparison, the SI units of measurement and their abbreviations
appear in Table 1. These abbreviations are those usually applied to each
unit of measurement, and they were carefully chosen to be the most ef-
fective. Therefore, it is important that they be used whenever applicable
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to ensure universal understanding. Note the similarities of the SI system
to the MKS system. This text uses, whenever possible and practical, all
of the major units and abbreviations of the SI system in an effort to sup-
port the need for a universal system. Those readers requiring additional
information on the SI system should contact the information office of the
American Society for Engineering Education (ASEE).*

Figure 4 should help you develop some feeling for the relative mag-
nitudes of the units of measurement of each system of units. Note in the
figure the relatively small magnitude of the units of measurement for the
CGS system.

A standard exists for each unit of measurement of each system. The
standards of some units are quite interesting.

The meter was originally defined in 1790 to be 1/10,000,000 the dis-
tance between the equator and either pole at sea level, a length preserved
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*American Society for Engineering Education (ASEE), 1818 N Street N.W., Suite 600,
Washington, D.C. 20036-2479; (202) 331-3500; http://www.asee.org/.

1 slug
English 1 kg

SI and
MKS

1 g
CGS

1 yd

1 m

1 ftEnglish

English

SI
and MKS

1 yard (yd)  =  0.914 meter (m)  =  3 feet (ft)

Length:

Mass:

1 slug  =  14.6 kilograms

Temperature:

English
(Boiling)

(Freezing)

(Absolute zero)

Fahrenheit Celsius or
Centigrade

Kelvin

– 459.7˚F –273.15˚C 0 K

0˚F

32˚F

212˚F

0˚C

100˚C

273.15 K

373.15 K

SI

MKS
and
CGS

K  =  273.15  +  ˚C

(˚F  –  32˚)˚C  = 5
9
_

˚F  = 9
5 ˚C  +  32˚_

English
1 ft-lb SI and

MKS
1 joule (J)

1 erg (CGS)

1 dyne (CGS)

SI and
MKS
1 newton (N)

1 ft-lb  =  1.356 joules
1 joule  =  107 ergs

1 pound (lb)  =  4.45 newtons (N)
1 newton  =  100,000 dynes (dyn)

1 m  =  100 cm  =  39.37 in.
2.54 cm  =  1 in.

English

CGS 1 cm

1 in.
Actual
lengths

English
1 pound (lb)

Force:

Energy:

1 kilogram  =  1000 g

FIG. 4

Comparison of units of the various systems of units.
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